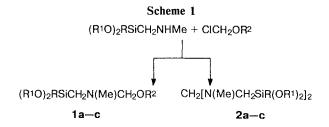
(N-methyl-N-alkoxymethylaminomethyl)dialkoxysilanes and bis [N-methyl-N-(dialkoxysilylmethyl)amino]methanes

N. F. Lazareva,* V. P. Baryshok, and M. G. Voronkov

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 ul. Favorskogo, 664033 Irkutsk, Russian Federation. Fax: +7 (395 2) 466 434

(N-methyl-N-alkoxymethylaminomethyl)-dialkoxysilanes and bis[N-methyl-N-(dialkoxymethyl)amino]methanes were first obtained by the interaction of (N-methylaminomethyl)dialkoxy-R-silanes with chloromethyl alkyl ethers in yields of 40--67~% and 10--25~%, respectively.


Key words: (*N*-methyl-*N*-alkoxymethylaminomethyl) dialkoxysilanes, bis[*N*-methyl-*N*-(dialkoxymethyl)amino|methanes, chloromethyl alkyl ether.

The sole example of organosilicon α -amino ethers, N-methoxymetyl-N-benzylaminomethyltrimethylsilane, has been obtained by the reaction between N-benzylaminomethyltrimethylsilane and formaldehyde.¹

We performed the reaction between N-methylaminomethyldialkoxysilanes and chloromethyl alkyl ethers in the presence of triethylamine, via scheme 1.

In this reaction, along with the expected product of nucleophilic substitution of the chlorine atom $(1\mathbf{a}-\mathbf{c})$, bis [N-methyl-N-(dialkoxysilylmethyl)amino] methanes $(2\mathbf{a}-\mathbf{c})$ are also formed, possibly due to the subsequent reaction of nucleophilic O-substitution. The successive transformation of compounds $1\mathbf{a}-\mathbf{c}$ into $2\mathbf{a}-\mathbf{c}$ is confirmed by the following reaction:

 $(EtO)_3SiCH_2NHMe + 1b \longrightarrow 2b$.

a: R = OMe, R1, R2 = Me **b:** R = OEt, R1 = Et, R2 = Me **c:** R = Me, R1, R2 = Et

The obtained compounds 1a—c and 2a—c are colorless high boiling liquids with a slight specific odor. Their physicochemical characteristics, the elemental analyses data, and PMR spectra are summarized in Tables 1, 2.

Table 1. Characteristics of $R^2OCH_2N(Me)CH_2SiR(OR^1)_2$ and $CH_2[N(Me)CH_2SiR(OR^1)_2]_2$

Compound	R	R ¹	R ²	B.p./°C (p/Torr)	$n_{\rm D}^{20}$	Yield (%)	Molecular formula	Found Calculated (%)			
								С	Н	N	Si
1a	OMe	Me	Me	47-48/(1)	1.4141	46	C ₇ H ₁₉ N ₁ O ₄ Si	39.85 40.17	8.76 9.15	6.49 6.69	14.01 13.42
1b	OEt	Et	Me	66-68/(1)	1.4138	40	$C_{10}H_{25}N_1O_4Si$	47.35 47.78	9.88 10.02	5.28 5.57	12.01 11.17
1c	Me	Et	Et	83-84/(3)	1.4182	67	$C_{10}H_{25}N_1O_3Si$	51.38 51.02	10.88 10.70	<u>5.68</u> 5.95	12.22 11.93
2a	OMe	Me	_	112-114/(1)	1.4286	25	$C_{11}H_{30}N_2O_6Si_2$	38.42 38.57	8.65 8.83	8.08 8.18	15.96 16.40
2b	OEt	Et	_	141-143/(1)	1.4268	20	$C_{17}H_{42}N_2O_6Si_2$	47.48 47.85	<u>9.66</u> 9.92	6.77 6.57	13.89 13.16
2c	Me	Et	_	115—118/(1)	1.4325	10	$C_{15}H_{38}N_2O_4Si_2$	<u>49.67</u> 49.14	10.95 10.45	7.85 7.64	15.98 15.32

Compound	CDCl ₃ , δ									
	R ² O-C	O-CH ₂ -N	N-CH ₂ -N	N-Me	N-CH ₂ Si	CH ₃ -Si	Si(OR ¹)			
1a	3.30 s	3.98 s	_	2.43 s	2.20 s		3.57 s			
1b	3.29 s	3.94 s	_	2.42 s	2.18 s		1.23 t, 3.85 q			
1c	1.18 s 3.49 q	3.98 s		2.39 s	2.11 s	0.17 s	1.21 t, 3.80 q			
2a	_ ^	_	2.68 s	2.27 s	2.04 s		3.58 s			
2b		_	2.68 s	2.27 s	2.02 s		1.22 t, 3.86 q			
2c	_	_	2.65 s	2.25 s	1.97 s	0.16 s	1.20 t, 3.79 q			

Table 2. ¹H chemical shifts in the NMR spectra of R²OCH₂N(Me)CH₂SiR(OR¹)₂ and CH₂[N(Me)CH₂SiR(OR¹)₂]₂

Experimental

(N-methyl-N-alkoxymethylaminomethyl)dialkoxysylanes (1a-c) and bis[N-methyl-N-(dialkoxysilylmethyl)amino-]methanes (2a-c). A solution of 0.01 M chloromethyl alkyl ether in 20 mL of Et₂0 was slowly added dropwise to a mixture of 0.01 M N-methylaminomethyldiethoxy-R-silane and 0.01 M triethylamine in 50 mL of absolute Et₂O with stirring in a dry argon atmosphere. The reaction mixture was stirred for 2 h at ~20 °C. The precipitate that appeared was filtered off and washed with Et₂O (2×30 mL). The Et₂O was removed from the filtrate and the residue was distilled in vacuo. Yield,

constants and data of elemental analysis of the obtained compounds are given in Table 1.

Bis[N-methyl-N-(triethoxysilylmethyl)amino]methane (2b). A mixture of 2.07 g (0.01 M) N-methylaminomethyltriethoxysilane and 2.69 g (0.01 M) 1b was kept under Ar for 4 h at 50-60 °C. Compound 2b was isolated from the reaction mixture by vacuum distillation (96 %).

References

1. A. Padwa and W. Dent, J. Org. Chem., 1987, 52.

Received August 10, 1994

N-(2-Thenyl)derivatives of aminoalkyltriethoxysilanes,-silatranes and 2,2-dimethyl-1,3-dioxa-6-aza-silacyclooctane

M. G. Voronkov, N. F. Lazareva, G. G. Efremova, and V. P. Baryshok*

Irkutsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 ul. Favorskogo, 664033 Irkutsk, Russian Federation.

Fax: +7 (395 2) 466 434

The reactions of aminoalkylethoxysilanes and 2,2-dimethyl-1,3-dioxa-6-aza-2-silacyclooctane with 2-(chlormethyl)thiophene and its 5-chloroderivative lead to the corresponding N-(2-thenyl) derivatives. The N-methyl-N-(2-thenyl)aminomethyltriethoxysilane and 5-chlorothyenyl derivative formed are converted by triethanolamine into silatranes.

Key words: aminoalkylethoxysilanes, 2-(chlormethyl)thiophene, 2-(chlormethyl)5-chlorothiophene, N-methyl-N-(2-thenyl)-aminomethyltriethoxysilanes, N-methyl-N-(2-thenyl)aminomethylsilatrane, 2,2-dimethyl-1,3-dioxa-6-aza-2-silacyclooctane.

2-(Chlormethyl)thiophene has been known to react with liquid NH₃ to form a mixture of primary, secondary, and tertiary (2-thenyl)amines.¹

We obtained the corresponding N-(2-thenyl)-derivatives by reacting aminoalkylethoxysilanes and 2,2-dimethyl-

1,3-dioxa-6-aza-2-silacyclooctane with 2-(chloromethyl)thiophene and its 5-chlorine-substituted derivative.

The corresponding silatranes 11, 12 are formed by mixing equimolar amounts of compounds 2, 6 and triethanolamine.